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Abstract. High level languages for parallelism need to be performant
on a wide range of workloads: they may be data-parallel and/or task-
parallel, as well as regular or irregular. Scheduling, which is implemented
via an interaction between the runtime system and the generated code,
has a significant impact on the performance and scalability of these lan-
guages. In this paper, we demonstrate the integration of Work Assisting,
our dynamic scheduler combining task-parallel and data-parallel sched-
ulers, in combinator-based parallel array languages. These languages re-
quire fusion for high performance, and often feature scans to support
irregular computations. Chained scans, the fastest parallel scans in our
experiments, require a data-parallel scheduler as provided by Work As-
sisting. We show how code can be generated with support for fusion and
chained scans, which can also fuse better than classic three-phase scans.
We present the integration of Work Assisting into an actual compiler
and runtime system of a such a language, Accelerate, and evaluate its
performance in this context for a range of applications.
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1 Introduction

Functional parallel array languages, such as APL [16], DaCe [31], Futhark [15],
SaC [14], Lift [26] and Accelerate [20], aim at providing the programmer with a
convenient programming model, which provides portability over a range of archi-
tectures, while still achieving performance which is as close to hand-optimized,
architecture specific implementations as possible [28]. However, in contrast to
customized, highly specialized solutions, the compilers and runtimes of these
high-level languages cannot assume much about a program. They therefore have
to employ strategies which work well on a large range of programs, which is espe-
cially the case for scheduling: the system should distribute the parallel workload
efficiently, whether the program contains task and/or data parallelism, as well
as whether it is regular or irregular. In parallel languages, scheduling is imple-
mented via an interaction between the runtime system and the generated code.

In the context of code generation, compilers for array based functional lan-
guages have to solve two concrete problems: they have to fuse array traversals,
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often expressed in the high-level language via higher-order operations, such as
maps, scan, folds and permutations, to generate the optimal number of loops.
Furthermore, efficient code has to be generated for the different communication
patterns, even when they are fused with other patterns. Among these, scans, also
known as generalised prefix sums, are the most challenging. As scans are used
extensively when expressing irregular parallel algorithms in array languages, an
efficient parallel implementation for scans is particularily important.

Given the importance of scheduling, it is not surprising that a wide range of
strategies have been proposed, and the choice of the strategy influences which
parallel algorithms can be expressed in the language. Work stealing [7] or vari-
ants of it are commonly used in parallel languages and libraries, for instance
in OneTBB [24], Halide [23] and Manticore [13]. It is a task-parallel scheduling
strategy, but it can also be used for data parallel applications by splitting a
data-parallel computation in multiple tasks [27]. However, some data-parallel
algorithms require a dedicated data-parallel scheduler; for instance, chained
scans [12, 21, 11] require that blocks of an array are distributed or claimed in
a specific order. Another reason why explicit data-parallel schedulers might be
chosen is that they potentially have smaller overhead than task-parallel sched-
ulers for purely data-parallel computations. For this reason, some languages and
libraries, including SaC [14] and early versions of OpenMP [1], have thus cho-
sen to use a data-parallel scheduler, and those cannot exploit task parallelism.
Work Assisting [9] is a scheduler for mixed data and task parallelism: it uses a
task-parallel scheduler for task parallelism, and a data-parallel scheduler within
a data-parallel subcomputation.

In earlier work [9], we have introduced the Work Assisting scheduler and eval-
uated its performance in stand-alone benchmarks. Since then, we implemented
Work Assisting in the compiler of Accelerate to futher investigate the integra-
tion of Work Assisting with code generation, fusion, and other optimizations in
a compiler, and to perform benchmarks on larger programs. We report on these
findings in this paper; we discuss how suitable Work Assisting is as scheduling
strategy for a parallel array language, and how it interacts with code generation
with fusion. We compare the performance of Accelerate with Work Assisting to
that of Futhark [15], a performant stand-alone parallel language with a very sim-
ilar programming model, as well as hand-optimized, base-line implementations.
The implementation we present in this paper is able to:

– handle task and data parallelism,
– support parallel chained scans [12, 21, 11],
– support aggresive fusion [29], and
– perform no dynamic allocations for scheduling (except for the task queue).

We discuss how these together help to achieve the desired high performance for
data parallel array languages.

The remainder of this paper is structured as follows. After laying a back-
ground on parallel array languages in Section 2, we introduce the Work Assisting
runtime in Section 3. We elaborate on code generation for the data-parallel sub-
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computations, which we call kernels following GPU terminology, in Section 4.
We present benchmarks in Section 5.

2 Preliminaries

There are several kinds of parallelism in functional array programming. Each of
these require special handling and are supported to various degrees in the differ-
ent languages. First, we have the array operations which operate in parallel over
the values of the array. We call the parallelism within an array operation data
parallelism. These operations may be simple maps of sequential operations over
one-dimensional or multi-dimensional arrays, or operations that require some
additional communication like folds, scans or permutations. Compilers typically
require that array operations are not started from within other array operations,
either by language design or a compiler pass [4].

Due to the absence of side-effects, purely functional languages in general
expose another potential source of parallelism: computations which have no data
dependency can be evaluated in parallel, without affecting the result. We call
the parallelism between array operations task parallelism. This implicit task
parallelism can be exploited by the compiler to reduce the overhead of data-
parallel operations like scans that do not scale linearly, or keep processors busy
when the explicit data parallelism available is not sufficient. Since Accelerate
is embedded in Haskell, task parallelism in Accelerate may also occur when a
Haskell program runs multiple Accelerate programs.

Since only the outer level of the program may contain task parallelism, acting
as a wrapper around data-parallel computations, we can compile the task-parallel
and data-parallel parts of the program separately. We will call the compiled data-
parallel computations kernels, as our model is similar to the GPU model.

2.1 Fusion

Fusion, a program transformation which combines several traversals of a data
structure, is an important optimization to reduce the memory footprint and
execution time of a program. This is especially important for functional array
languages, as they advocate constructing a program using small building blocks
like parallel maps, folds and scans. Unfortunately, in the parallel context, the
problem is more difficult, since the parallel structure needs to be maintained. We
can split fusion into two subproblems: deciding what operations should be fused,
and generating code for a fused set of operations. Accelerate uses an Integer
Linear Programming formulation for the former [29]. In this paper we only focus
on the latter and present how we generate code for a list of operations that
are fused together. There are two relevant consequences of Accelerate’s fusion
system for this paper. Firstly, operations may be vertically fused, in which case
the corresponding array is not manifest in memory. Instead, a produced value is
stored in a scalar variable and is directly consumed by another array operation.
Secondly, it is not practical to design specialized skeletons or templates for some
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of the combinators, as Accelerate previously did [8]. Instead, we need a single
template that we can instantiate to express any combination of array operations.

2.2 Chained Scans

Scans, generalized prefix sums, are an important parallel primitive for many, es-
pecially irregular, applications. At each index, they compute the combined value
of all prior values. We found that chained scans [12, 21], whereas originally de-
signed for GPUs, are also the fastest scans on multi-core CPUs [11]. These scans
operate with a single traversal over the data, in contrast to the more commonly
used reduce-then-scan. We explain the working of chained scans together with
the code we generate for them in Section 4.2.

Scans are commonly used for compaction or filtering, which can be imple-
mented using a scan followed by a scatter (permute), as shown in Listing 1.
Using chained scans and a sufficiently flexible fusion system, a filter can be im-
plemented using a single traversal over the input [21]. To enable this, we must
allocate an array with the size of the input for the output, and shrink it to the
correct size later, as we do not know the output size in advance.

3 Work Assisting Runtime

The core idea behind our Work Assisting scheduler [9] is to primarily use the
task-parallel scheduler. Only when the system runs out of tasks, threads try to
assist in a kernel (a data-parallel computation) of another thread. These kernels
can be found via a shared array called activities, where threads share the kernel
they are currently working on. This array has one slot per thread. Scheduling
within a kernel happens with a dynamic data-parallel scheduler. In the current
implementation of Accelerate, we use self scheduling [17] with atomic fetch-and-
add: when a thread needs to claim new work within a data-parallel kernel, it
does so by atomically incrementing a shared counter for that kernel.

Most important types and definitions of the runtime can be found in Listing 2.
We introduced Work Assisting in [9]. However, the Accelerate implementation

which we describe and evaluate here differs in a few minor ways: In the original
description, a task can be a data-parallel task, while a task in the Accelerate

Listing 1 Simplified definition of filter, which can be fused into a single kernel
except for the shrink at the end.

function filter(predicate, input)
ps← map(\x→ if predicate x then 1 else 0, input)
(destination, output_size)← scanl’((+), 0, ps)
ws← zipWith3(\x p d→ if p then Just (d, x) else Nothing, input, ps, destination)
output← Uninitialized array with the same size as input
scatter(output,ws)
return shrink(output, output_size)
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implementation returns a data-parallel computation, which we call a kernel. We
handle EmptySignal outside of the work function in the runtime, to simplify
code generation. Furthermore, we do not store work_size explicitly; instead it
is computed in the work function and only available within that function. The
finish function is not explicitly stored; it is now handled by calling the work
function with a magic value and by storing a continuation task in the kernel. We
changed work_index and work_size to 64-bit integers.

3.1 Program as a Coroutine

Array languages have a clear separation between the data-parallel parts of the
program (kernels) and the control flow between them. The outer level of a pro-
gram consists of the control flow and administrative work, and may contain task
parallelism. To support task parallelism in this outer level, we compile this into
a coroutine [22], a function that can be suspended during its execution. We sus-
pend the coroutine when we launch a kernel and the execution of the coroutine
is resumed after the kernel is finished. It is also suspended when we need to
synchronize with another part of the program, e.g. when we need to join the
execution after a fork.

Our implementation is similar to the stackless coroutines in for instance
Rust [19]. The variables of the coroutine are stored in an object on the heap
which we call a Program (Listing 2). This object also contains a pointer to the
function of the program (the program function) and a reference count.

When suspending the function, the system marks where (at which state or
location in the program) the function should resume. Whereas this is typically
stored in the object, Program in our case, we store it outside of that object, in
a task. A task is then a pointer to a program and a location in that program.
This allows the coroutine to be in multiple states concurrently. This allows us
to implement fork without allocations: a fork is implemented by scheduling a
task of the same program, at a different location. The coroutine is compiled into
the program function and takes the Program and the location in the program
as arguments.

Listing 2 Core Types for the Runtime System

struct Workers
int thread_count;
TaskScheduler* task_scheduler;
KernelLaunch* activities;

struct Program
int reference_count;
ProgramFunction run;
data; // Variables of the program

struct Task
Program* program;
int location;

function schedule(Workers*,Task)
function schedule_after(Workers*,

Task, Signal, SignalWaiter)
function signal_resolve(Workers*,

Signal)

type ProgramFunction
(Workers*, int thread_index,Program∗, int location)→ KernelLaunch*
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Synchronization within a program is implemented using a Signal, which is
similar to a future or promise in other languages. Tasks may wait on a signal,
until another task resolves the signal. A signal can be resolved once and does
not contain an actual value. Waiting tasks are stored in a concurrent linked list
of SignalWaiter objects. These objects are preallocated in the program for each
point in the program where it waits on a signal.

3.2 Kernels

When a program needs to execute a data-parallel computation, it returns an
object describing the launch of that kernel. The program object contains a pre-
allocated kernel launch object for each kernel in the program, and we can thus
start a kernel without memory allocations.

The kernel launch object contains a fixed form header, and the input and
output arrays of this kernel and their sizes. If the operations in the kernel require
it, we can also allocate additional memory called kernel memory in that object,
for instance for communication between threads for a scan.

In the header, we store a kernel function, the function that all threads working
on this kernel should call. As its arguments, this function gets a pointer to the
kernel launch object and an index first_index, denoting the index of the tile we
should first work on. The header also contains the task which could be executed
after the kernel.

The work within a kernel is split in tiles. Argument first_index is the index
of the tile that this thread should work on first. The Work Assisting runtime has
already claimed this tile. Later tiles are claimed by the work function itself via
atomic fetch-and-add. The function is also called with two magic values. It is
called with first_index = −1 before the parallel work of this kernel starts, where
it may initialize kernel memory. Finally, it is called with first_index = −2 after
the parallel work of the kernel, for instance to write the result of a fold to the
output array when all threads have finished.

4 Code Generation for Data Parallelism

Now that we have seen the runtime system and the method of generating code for
the task-parallel part of the program, we can focus on the data-parallel kernels
in the program. The work of a kernel is scheduled via tiles: the workload is split
into tiles, which are claimed one by one via atomic fetch-and-add. Whereas some
data-parallel combinators are more naturally implemented by splitting the load
in a fixed number of tiles, and some in fixed size tiles, we always use fixed size
tiles for uniformity. This way we can compile all the combinators into one generic
form. This is needed for fusion, as any combinator can be fused with any other
combinator.

Fixed size tiles are required for chained scans [12], as they expect that the
data of a tile fits in the cache. The structure of our generated code is mainly
dictated by our support for chained scans. We first present this general form,
and then explain how the array combinators can be compiled into this form.



Scheduling Array Languages with Work Assisting 7

4.1 Generic Format for Code Generation

We present the generic structure into which we can compile any array operation
in Listing 3. The highlighted lines are the places where operation specific code
can be inserted. We first explain this generic structure, and then show how how
concrete operations emit code at what parts of this structure in Section 4.2.

A kernel is compiled into a function and an accompanying object that con-
tains the data (references to the input and output of the kernel and their sizes)
and administrative information for the kernel. Array combinators may also re-
serve space in this object (label A). We call this kernel memory, which may be
used for communication between the threads working on this kernel.

Listing 3 Template for a kernel, with tile size 2048.
When compiling an array combinator, code may be placed at the highlighted positions.

struct Arg
KernelFunction* work_function;Program* program; int program_location;
int active_threads; int work_index;
A: Declare kernel memory

function kernel(Arg* arg, int first_index)
tile_count← (arg→n + 2047)/2048
if first_index = −1 then

B: Initialize kernel memory
return tile_count > 1

else if first_index = −2 then
C: Finalize kernel
return

previous_idx← −1; sequential← true; tile_idx← first_index
D: Thread initialization
while tile_idx < tile_count do

if tile_idx = previous_idx + 1 then sequential← false
start← tile_idx ∗ 2048; end← min(start + 2048, arg→n)
if sequential then

E’: Before tile loop
for i in start . . . end do // Tile loop

F’: Body of tile loop

G’: After tile loop
else

E: Before tile loop
for i in start . . . end do // Tile loop

F: Body of tile loop

G: After tile loop
for i in start . . . end do // Tile loop

H: Body of next tile loop
tile_idx← atomic_fetch_add(arg→work_index)

I: Thread finalization
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Before and after the parallel work of a kernel, the kernel function is called to
initialize the launch (with first_index = −1) and finalize the kernel (first_index =
−2). Array combinators can emit initialization and finalization code respectively
at label B and C. A fold for instance uses this to set the reduced value to zero
at B and write the final result to the output at C. After initialization, a thread
returns whether the kernel may be executed in parallel. If the input is small, the
kernel function will decide to not run the work in parallel.

To perform the parallel work, multiple threads will call the work function.
Array combinators may place code to initialize a thread at label D. Afterwards
a thread will repeatedly handle a tile. It first works on tile first_index, claimed
by the Work Assisting runtime, and later claims tiles using atomic fetch-and-
add. Within that while loop, we traverse the data in that tile in a tile loop.
We can place code before (E), within (F) and after the tile loop (G). We allow
combinators to insert specialized code for sequential execution (E’, F’ and G’).
As long as a thread is the only thread to work on a kernel, it will operate in a
sequential mode, and as soon as another thread also works on this kernel, it will
switch to the parallel mode. Only scans generate different code, as they require
two tile loops in the parallel mode. We thus allow combinators to also generate
code in a later tile loop (H). Finally, combinators may emit code to finalize a
thread (I). For a commutative fold, we use this to let a thread contribute its
locally reduced value to the global value.

All operations in a kernel are compiled to this format, and are placed to-
gether in one kernel. If an operation declares that it needs a second tile loop
(by generating code at label H), later operations will also be placed in that tile
loop. If a kernel contains multiple of those operations, it will thus have more than
two tile loops. If a kernel only has a single tile loop in the parallel mode, the
single-threaded mode is discarded, as it would already not have single-threaded
overhead.

4.2 Generating Code in the Generic Format

To illustrate that the array combinators in Accelerate can be compiled to this
format, we demonstrate this translation for several combinators. First, embar-
rassingly parallel combinators like map and generate only need to generate code
at labels F and F’.

Scans Scans are the most complicated combinators. We show the generated code
corresponding with (ys, z) = scanl’ (+) 0 xs in Listing 4, which is an exclusive
left-to-right scan where the prefix values of xs are stored in ys, and the total
reduced value in z. Scans require synchronization between the threads, for which
they need two variables in kernel memory, defined at label A and initialized at
label B. Variable scan_index denotes the index of the tile that should next be
incorporated in the prefix value in scan_prefix.

If we ignore the special sequential mode for sequential execution, the scan
requires two tile loops to handle a tile of the input. In the first tile loop, it
reduces the values in the tile to an aggregate (E and F). It then waits for
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its turn to update the scan_prefix (G). With the found prefix value, it then
performs a scan over this tile in another tile loop (H). This chained scan thus
needs to block between the two tile loops, but in return it gets better memory
performance as the values of xs of this tile are likely to still be in cache in
the second tile loop. The chained scan may be changed to a chained scan with
decoupled look-back [21], to reduce the impact of the synchronization at label G.
We are also considering to implement that in Accelerate.

To assure that the parallel chained scan executed on a single core performs as
fast a sequential scan, we add a special sequential mode [11]. This is important
when the program also contains task parallelism, as it then might be sufficient
to only exploit task parallelism. Variable sequential tracks whether this was the
only thread working on the scan. The sequential mode operates with one tile
loop, where it can directly execute the scan (labels E’, F’ and G’).

Fold Folds, or reductions, can be compiled in two ways. Since it is common that
the operator of a fold is commutative, we have a specialized implementation of
folds for commutative folds. Note that it is always required that the operator is
associative for parallel execution, but commutativity is not required.

If the operator of a fold is not (known to be) commutative, we generate code
via the same pattern as the code of parallel scans. This chained fold has more
overhead than two-step folds due to the additional synchronizations, but it does
allow us to generate code in the generic format. When we implement scans with
a decoupled look-back [21], we also expect to lower the overhead of folds as well.

Listing 4 Code Generation for Exclusive Scan, (ys, z) = scanl’ (⊕) 0 xs

A int scan_prefix; int scan_index;
B arg→scan_prefix← 0

arg→scan_index← 0
C ∗(arg→z)← arg→scan_prefix
E’ prefix← arg→scan_prefix
F’ arg→ys[i]← prefix

prefix← prefix⊕ arg→xs[i]
G’arg→scan_prefix← prefix

arg→index← tile_idx + 1

E aggregate← 0
F aggregate← aggregate⊕ arg→xs[i]
G while arg→scan_index ̸= tile_idx do

// Wait
prefix← arg→scan_prefix
arg→scan_prefix← prefix⊕ aggregate
arg→scan_index← tile_idx + 1

H arg→ys[i]← prefix
prefix← prefix⊕ arg→xs[i]

Listing 5 Code Generation for Commutative Fold, y = fold (⊕) 0 xs

A int fold_lock;
int fold_accumulator;

B arg→fold_lock← 0
arg→fold_accumulator← 0

C ∗(arg→y)← arg→fold_accumulator
D local← 0
F local← local⊕ arg→xs[i]
F’ local← local⊕ arg→xs[i]

I while atomic_swap(&arg→fold_lock, 1) ̸= 0 do
// Wait

arg→fold_accumulator← arg→fold_accumulator⊕ local
arg→fold_lock← 0
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The generated code of a commutative fold is shown in Listing 5. Since the
operator is commutative, we may compute a local result per thread and at the
end of the work for this thread, incorporate that local result in the global result
(I). This happens once per thread instead of once per tile. The global value is
stored in kernel memory, together with a lock (A).

4.3 Fused Away Arrays

By fusion, some arrays do not have to be fully manifest in memory. Instead, we
introduce local variables for these arrays that either contain a single value or one
value per element of a tile, depending on whether the array is used in multiple
tile loops. We introduce this at D using alloca, to allocate them on the stack.
LLVM may change this stack allocation to a variable stored in a register.

5 Benchmarks

To investigate the performance of Accelerate with the new Work Assisting sched-
uler and support for chained scans, we performed benchmarks on various appli-
cations taken from CFAL, Comparing Functional Parallel Array Languages [28].
We compare the performance of Accelerate with a reference implementation not
in an array language, and Futhark, a stand-alone functional parallel array lan-
guage. We ran the benchmarks on a machine with an AMD 2950X processor (16
cores, 32 threads) with 32GB of RAM on Ubuntu 22.04.

5.1 N-body and MultiGrid

We first briefly discuss two benchmarks of CFAL, before we discuss a detailed
case study on the Quickhull benchmark. N-body is a naive implementation of
n-body simulation and MultiGrid (MG) computes a solution to a differential
equation. The latter was taken from the NAS benchmarks [3]. The implementa-
tions are available online1 and we present the results in Table 1.

The n-body benchmarks show that the Work Assisting scheduler scales well in
Accelerate. All languages scale well in the medium and large input, but Futhark
and the OpenMP implementation scale worse on the small input. Scheduling is
more difficult here, as there is less data parallelism available. Accelerate scales
better than the other implementations here.

The OpenMP reference implementation of MG in Fortran is highly spe-
cialized, and these specializations are not directly possible in high level array
languages. Their compilers cannot apply the same optimizations automatically,
which gives them a large disadvantage in this application. As for the topic of
this paper, both Futhark and Accelerate scale well to 32 threads. However on
class C, Accelerate performs worse, both single-threaded and on 32 threads.

1 https://github.com/ivogabe/CFAL-bench-new-accelerate or [10]
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N-body Small Medium Large
Input size 103 104 105

Steps 105 103 101

Threads 1 32 1 32 1 32
OpenMP 190 s 23.5 s 232 s 13.7 s 193 s 13.6 s
Futhark 157 s 26.0 s 158 s 12.1 s 167 s 12.0 s

Accelerate 162 s 14.6 s 162 s 11.6 s 162 s 11.4 s
MG Class A Class B Class C

Input size 256×256×256 256×256×256 512×512×512
Steps 4 20 20

Threads 1 32 1 32 1 32
OpenMP 0.66 s 0.46 s 2.92 s 2.26 s 21.3 s 17.4 s
Futhark 3.65 s 0.68 s 15.5 s 3.00 s 127 s 24.3 s

Accelerate 3.68 s 0.67 s 17.0 s 3.11 s 168 s 51.2 s
Table 1. N-body and MultiGrid benchmarks

5.2 Quickhull

Quickhull is an algorithm to compute the hull of a set of points, in our case
two dimensional points. Its structure is similar to quicksort, as it recurses twice
on smaller sets. However, depending on the shape of the input, these two sets
might together be significantly smaller than the input and the recursion depth
thus depends on the shape of the input. Hence we measure the performance on
three different input shapes: rectangle, circle and quadratic. For these inputs,
the points were sampled from a rectangle or circle, or near a quadratic curve.

This application has nested parallelism, as the two parallel recursive calls
may perform more parallel work. There are various ways to implement this in
a parallel array language. Flattening [6] converts nested parallelism into flat
parallelism.To further investigate the performance of Accelerate with its new
scheduler and chained scans, we have implemented an entirely flattened imple-
mentation (Flat), and various implementations that do use task parallelism and
are partially flattened. Split is flattened after an initial split, and implementa-
tions Rec 2 and Rec 5 use task-parallel recursion for the first two or five levels,
and are flattened afterwards. All implementations make heavy use of scans.

We report the execution times of these in Table 2, together with two refer-
ence implementation: one in ParlayLib [5], that uses task parallelism instead of
flattening, and the implementation in Futhark from the CFAL project, which is
entirely flattened. The code is available online2. Our implementations are faster
than Futhark, both single-threaded and on 32 threads. Futhermore, they scale
more than Futhark. They do not scale as well as the reference implementation
in ParlayLib. However, that implementation is not in an array language and
manually reuses memory. Due to the functional nature of Accelerate, we do not
want to concern the user with memory management. Instead, we should let the
compiler optimize the program with for instance in-place updates.
2 https://github.com/ivogabe/quickhull-benchmarks or [10]



12 I.G. de Wolff et al.

Rectangle Circle Quadratic
Input size 25 M 25 M 25 M

Output size 48 1057 358 K
Recursion depth 7 11 21

Threads 1 32 1 32 1 32
Reference implementations

ParlayLib 2.18 s 0.096 s 2.13 s 0.14 s 12.2 s 1.58 s
Futhark 1.89 s 0.56 s 1.64 s 0.54 s 10.9 s 3.38 s

Accelerate
Flat 1.06 s 0.26 s 1.00 s 0.30 s 8.36 s 2.29 s
Split 0.80 s 0.25 s 0.96 s 0.29 s 8.05 s 2.29 s

Rec 2 0.75 s 0.19 s 1.00 s 0.23 s 8.23 s 2.17 s
Rec 5 0.79 s 0.19 s 0.94 s 0.22 s 8.03 s 1.96 s

Table 2. Benchmarks of various implementations of Quickhull. Lower is better.

6 Related Work

Runtimes for parallel languages and frameworks are often build around work
stealing [7], as we discussed in the introduction. Work stealing stores task in
a queue per thread. This reduces contention on a queue, and improves cache
coherency by primarily letting threads take tasks from their own queue. Only if
that queue is empty, it will try to steal tasks from other threads. Work stealing
may be used as the task-parallel scheduler in Work Assisting.

Other schedulers for mixed data and task parallelism do exist [30, 25], but
they are less flexible: these schedulers fix the number of threads for a kernel at
its start, in contrast to our scheduler.

To implement data parallelism via task parallelism, the data parallel work-
load needs to be split in tasks. The granularity of the parallel work influences
the scheduling overhead [18, 24]. When implementing data parallelism via task
parallelism, tasks should not be split into too many tasks, as that gives schedul-
ing overhead, whereas too few tasks may result in work imbalance between the
cores, especially for irregular computations. Lazy Binary Splitting [27] only splits
work further depending on whether the local task queue is empty, and Heart-
beat scheduling [2] only shares new tasks at fixed intervals, to prevent scheduling
too many tasks. For data parallel schedulers like self scheduling [17], granular-
ity must also be controlled. Smaller tile sizes might however be possible since
claiming a tile requires only a single atomic increment and no allocations.

7 Conclusion

In this work we show the suitability of Work Assisting for parallel array lan-
guages. By employing both a task- and a data-parallel scheduler, we can effi-
ciently exploit both forms of parallelism in array programs. We elaborated on
the integration between the runtime and the generated code, via coroutines for
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the task-parallel part of the program, and the template for code generation of
data-parallel kernels. We support parallel chained scans, and can fuse them more
than other fusion systems. Using our implementation of Work Assisting in Accel-
erate, we evaluated the performance in various benchmarks. Our implementation
is often competitive with or faster than baseline implementations.

Artifact Availability The artifact is available in the Zenodo repository [10].

Disclosure of Interests. We have no relevant competing interests to declare.
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